Analyse

Exam

29th of June of 2006

- 1 Let $\{x_n\}_{n\in\mathbb{N}}$ be a convergence sequence of \mathbb{R}^n and $x=\lim_{n\to\infty}x_n$. Prove that $A=\{x_n\}_{n\in\mathbb{N}}\cup\{x\}$ is a compact set. (2 points)
- 2 Consider $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by $f(x,y) = \frac{yx^2}{x^2 + y^4}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0.
 - (i) Prove that f is continuous at (0,0).
 - (ii) Compute $D_u f(0,0)$ for all $u \in \mathbb{R}^2$.
 - (iii) Is f differentiable at (0,0)?. (give an appropriate argument.)
 - (3 points)
- 3 (i) Prove that for all $n \in \mathbb{N}$, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.
 - (ii) Prove in two different ways that the function y^2x^2 is integrable in $[0,1]\times[0,1].$
 - (3 points)
- 4 Write down the inverse function theorem. (A proof of it is not required.) (1 point)